Some iterative methods for solving operator equations by using fusion frames

نویسندگان

چکیده

In this paper, two iterative methods are constructed to solve the operator equation Lu = f where L : H ? is a bounded, invertible and self-adjoint linear on separable Hilbert space H. By using concept of fusion frames, which generalization frame theory, we design some algorithms based Chebyshev polynomials adaptive one according conjugate gradient method, accordingly, then investigate their convergence via correspond rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

USING FRAMES OF SUBSPACES IN GALERKIN AND RICHARDSON METHODS FOR SOLVING OPERATOR EQUATIONS

‎In this paper‎, ‎two iterative methods are constructed to solve the operator equation $ Lu=f $ where $L:Hrightarrow H $ is a bounded‎, ‎invertible and self-adjoint linear operator on a separable Hilbert space $ H $‎. ‎ By using the concept of frames of subspaces‎, ‎which is a generalization of frame theory‎, ‎we design some  algorithms based on Galerkin and Richardson methods‎, ‎and then we in...

متن کامل

Convergence of iterative methods for solving random operator equations

We discuss the concept of probabilistic quasi-nonexpansive mappings in connection with the mappings of Nishiura. We also prove a result regarding the convergence of the sequence of successive approximations for probabilistic quasi-nonexpansive mappings.

متن کامل

Richardson and Chebyshev Iterative Methods by Using G-frames

In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern,  Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper...

متن کامل

New iterative methods with seventh-order convergence for solving nonlinear equations

In this paper, seventh-order iterative methods for the solution ofnonlinear equations are presented. The new iterative methods are developed byusing weight function method and using an approximation for the last derivative,which reduces the required number of functional evaluations per step. Severalexamples are given to illustrate the eciency and the performance of the newiterative methods.

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2206955j